Каталог статей

Главная » Все схемы » Компьютер и электроника к нему!!! » Все для "кулера" (Вентилятора)

Выбранная схема!!!


6029
Простейший регулятор для вентилятора постоянного тока

Вентиляторы могут использоваться для охлаждения схем, но постоянное вращение при номинальном напряжении приводит к механическом износу, прежде всего, подшипников. Включая вентилятор лишь по мере необходимости, и на скорости, соразмерной температуре, можно существенно продлить срок его жизни, так же, как и срок жизни охлаждаемой им аппаратуры.

Простейшая схема управления лишь включает и выключает вентилятор, но расплатой за простоту являются коммутационные помехи по питанию и высокие механические нагрузки на вентилятор. Пропорциональные контроллеры, безусловно, более элегантны. Они включаются при переходе температуры через определенный порог, увеличивают скорость вращения по мере роста температуры, плавно снижают скорость, когда схема начинает остывать, и, наконец, останавливаются совсем.

Однако, большинство пропорциональных регуляторов скорости вращения вентиляторов неоправданно сложны, поскольку охлаждение схем – задача далеко не из области точных наук. Предлагаемая на Рисунке 1 схема ничуть не менее эффективна, чем навороченные регуляторы, и много раз с успехом использовалась. Для схемы необходимы только термисторный датчик температуры, MOSFET транзистор, резистор и конденсатор для блюстителей схемотехнической нравственности. Предполагается, что термистор имеет отрицательный температурный коэффициент. Если вы располагаете термистором с положительным коэффициентом, поменяйте его местами с резистором R1.

 

Рисунок 1.

Простейший пропорциональный регулятор для вентилятора постоянного тока можно сделать на термисторе и MOSFET транзисторе.

При комнатной температуре напряжение на затворе транзистора ниже типового порогового уровня Vgs(th), ток стока отсутствует, и вентилятор выключен. По мере роста температуры, сопротивление термистора падает, напряжение Vgs(th) растет, и транзистор начинает открываться. При достаточно высокой температуре транзистор входит в насыщение, и вентилятор начинает вращаться с максимальной скоростью. Практически получается, что интервал температур, в котором вентилятор из выключенного состояния достигает максимальной скорости, равен приблизительно 5 °C.

Пороговая температура, при которой начинается вращение вентилятора, устанавливается резистором R1. Для примера, пороговое напряжение затвора MOSFET транзистора NTD4959NHфирмы ON Semiconductor равно 2.0 ±0.5 В. Сопротивление RТЕРМ термистора ERTJ1VR103Hпроизводства Panasonic при температуре 25 °C имеет типовое значение 10 кОм. Чтобы установить порог 40 °C при напряжении питания вентилятора 12 В, сопротивление резистора должно быть:

R1 = RТЕРМ × Vgs(th)/(12 В – Vgs(th))

Взяв типовое значение Vgs(th) = 2 В и сопротивление термистора при 40 °C RТЕРМ = 5.067 кОм (из справочных данных), находим ближайшее значение в ряду 1% резисторов R1 = 1.00 кОм.

Вследствие технологического разброса пороговых напряжений Vgs(th), температура включения также будет иметь разброс от экземпляра к экземпляру. При небольшом объеме производства проблему можно решить, заменив R1 подстроечным резистором. Но это увеличит цену изделия, поэтому, возможно, вам придется просто смириться с этим фактом.

По счастью, N-канальные MOSFET транзисторы имеют отрицательный температурный коэффициент напряжения порога, что, отчасти, компенсирует последствия разброса Vgs(th). Тем не менее, необходимо убедиться, что разброс температур включения будет приемлем для вашей системы.

Двигаясь в обратном направлении, от крайнего верхнего к крайнему нижнему значению указанного в справочных данных порогового напряжения Vgs(th), рассчитаем диапазон пороговых температур для наихудшего случая:

Vgs(th)мин. = 1.5 В и R1 = 1.00 кОм

Таким образом, вентилятор начнет вращаться при

RТЕРМ = 1.00 кОм × (12 В – 1.5 В)/1.5 В = 7.00 кОм,

что, согласно справочным данным, произойдет при температуре 33 °C. Аналогично, при самом большом пороговом напряжении, вращение вентилятора начнется при сопротивлении термистора 3.80 кОм и температуре 46 °C. Поскольку пороговое напряжение большинства MOSFET транзисторов будет располагаться вблизи середины указанной в справочнике зоны разброса, мы вправе ожидать, что температура включения вентилятора в крупных партиях изделий будет находиться в диапазоне 40 ±3 °C.

Теперь, несколько аспектов, на которые следует обратить внимание. Прежде всего, схема применима только к небольшим вентиляторам постоянного тока. Для больших вентиляторов, или массивов вентиляторов, схема будет неэффективной, а с вентиляторами переменного тока вовсе неработоспособной. Далее, необходимо посмотреть в справочных материалах на вентилятор, способен ли он работать в режиме периодического включения. Как правило, большинство вентиляторов на это рассчитаны. Но иногда требуется, чтобы скорость не падала ниже определенного минимального значения. В таком случае, поставьте резистор параллельно MOSFET транзистору.

И, наконец, нельзя забывать о том, что при средней скорости вращения вентилятора, MOSFET транзистор работает в линейном режиме и может рассеивать значительную мощность. Поскольку такое происходит только при вращении вентилятора, самым простым решением будет размещение транзистора на пути воздушного потока.

На английском языке: DC Fan Controller Takes Bare Bones Approach




Источник: http://www.rlocman.ru/shem/schematics.html?di=105413
Категория: Все для "кулера" (Вентилятора) | Добавил: brys99 (27.03.2015)
Просмотров: 4324 | Теги: вентилятора, ТОКА, постоянного, для, регулятор, Простейший | Рейтинг: 4.7/3


Всего комментариев: 0

Все ссылки на книги и журналы, представлены на этом сайте, исключительно для ознакомления, авторские права на эти публикации принадлежат авторам книг и издательствам журналов! Подробно тут!
Жалоба

Пожалуйста оставьте свои комментарии !!!!

Имя *:
Email:
Код *:


ElectroTOP - Рейтинг сайтов
Copyright Zloy Soft (Company) © 2008 - 2016