Каталог статей

Главная » Все схемы » Теория » Теоретические материалы

Выбранная схема!!!


2405
Тиристоры, Симисторы допольнение к материалу№2404
Тиристоры и симисторы - это ключевые полупроводниковые элементы, которые могут находиться в одном из двух устойчивых состояний - проводящем (открытом) и непроводящем (закрытом). Перевод из непроводящего в проводящее состояние осуществляется относительно слабым постоянным или импульсным сигналом.

Эти свойства обуславливают основное предназначение тиристоров и симисторов как ключевых элементов для коммутации токов в нагрузке. В отличие от контактных коммутаторов - электромеханических реле, пускателей и контакторов - тиристоры и симисторы осуществляют бесконтактную коммутацию тока в нагрузке со всеми вытекающими из этого положительными последствиями.

Тиристоры в открытом состоянии проводят ток только в одном направлении, симисторы - в двух. Таким образом, один симистор может заменить два встречно-параллельно включенных тиристора. Поэтому решения на симисторах представляются более экономичными.
Контактная и бесконтактная коммутация тока

Прежде чем переходить к рассмотрению принципов работы тиристоров и симисторов и их основных характеристик, сравним контактные (электромеханические реле, пускатели, контакторы) и бесконтактные (тиристоры и симисторы) способы коммутации тока, преимущества и недостатки каждого из них.

Ресурс, количество переключений

Количество переключений полупроводниковых коммутаторов практически неограниченно. Долговечность полупроводников определяется перепадами рабочих температур: количеством циклов и их амплитудой.

Реле, а тем более электромагнитные пускатели, имеют ограниченный ресурс переключений. Различают механический ресурс (механическую износостойкость в отсутствие тока через контакты), который у современных реле составляет 1-2 миллиона переключений, и коммутационную износостойкость при максимальной нагрузке, которая в 10-100 раз ниже. Для оценки укажем, что при непрерывной работе и периоде переключений 10 с, ресурс вырабатывается через 2 недели, при периоде переключений 5 мин - через 1 год. Отсюда сразу следует, что применение контактных коммутаторов оправдано только при редких коммутациях нагрузки (с периодов больше 10 мин).
Частота коммутации

Полупроводниковые коммутаторы допускают коммутацию нагрузки на каждом полупериоде сетевого напряжения.

Примечание: В специальных схемотехнических решениях, в которых применяется принудительное закрытие элементов, частота коммутации может быть еще выше.

У электромеханических устройств, помимо количества циклов переключений, есть и еще одно важное негативное свойство - низкая частота коммутаций цепи нагрузки. Она определяется и механическими свойствами реле и тем, что при возрастании частоты коммутаций реле начинает перегреваться. Выше отмечалось, что при необходимости осуществлять коммутацию электромеханическими устройствами с малыми периодами, срок службы этих устройств будет невелик.

Кроме того, механика - это движущиеся части. А движущиеся части всегда являются источником повышенного риска: истирание осей, увеличение люфта, общее расшатывание механизма вплоть до потери функциональности и т. д.
Искрообразование

Бесконтактные коммутаторы по определению не искрят.

Коммутация при помощи электромеханических устройств неизбежно сопровождается искрообразованием, которое, с одной стороны, приводит к обгоранию контактов и снижению ресурса, а с другой, вызывает сильные высокочастотные электромагнитные помехи, которые могут приводить к сбоям в работе измерительных и микропроцессорных приборов.
Электромагнитные помехи

Для того, чтобы не создавать электромагнитные помехи, возникающие при коммутации сильных токов (проводники с быстро меняющимся током работают как обычные антенны), желательно коммутацию производить в моменты времени, когда эти токи минимальны (в идеале равны нулю). Полупроводниковые коммутаторы, благодаря возможности управления моментом переключения, позволяют применять решения, в которых коммутация производится в моменты нулевого тока в сети.

Контактная коммутация, как правило, осуществляется в произвольные моменты времени, а значит, и в моменты максимальных значений токов. Соответственно, контактная коммутация сопровождается сильными электромагнитными помехами. В результате устойчивость работы контрольно-измерительных систем снижается.
Потери на коммутирующем элементе

Падение напряжения на открытом симисторе составляет 1-2 В и мало зависит от протекающего тока. Как следствие, на открытом симисторе выделяется относительно большая мощность. Например, при токе 40 А на симисторе выделяется 40-80 Вт тепла, которые необходимо отвести. Для этого применяются радиаторы. Это обстоятельство является самым серьёзным недостатком бесконтактных коммутаторов, так как требует дополнительное место для радиатора и удорожает решение.

На контактах реле и пускателей также выделяется определенная мощность, но она меньше, чем у симисторов. Однако, следует иметь в виду, что по мере обгорания контактов выделяемое тепло возрастает. Для борьбы с этим явлением требуется регулярная зачистка контактов или замена всего устройства. Всё это приводит к росту эксплуатационных расходов. Кроме того, необходимо учитывать выделение тепла за счёт прохождения тока через обмотку во включенном состоянии коммутатора.
Экономические соображения

Рассматривая целесообразность применения контактного или бесконтактного способа коммутации, необходимо, помимо сугубо технических преимуществ того или иного способа, учесть следующие экономические соображения.

С одной стороны, контактные коммутаторы, как правило, значительно дешевле бесконтактных устройств, особенно в совокупности с радиаторами.

С другой стороны, ресурс бесконтактных коммутаторов практически неограничен, обслуживание устройств не требуется. Контактные коммутаторы имеют ограниченный ресурс, требуют проведения регламентных работ и регулярной замены в течение срока службы. Как следствие, эксплуатационные расходы растут, а надёжность систем, в которых применяются контактные коммутаторы с малыми периодами переключения, снижается.
Принцип работы

Тиристоры и симисторы относятся к семейству полупроводниковых приборов, свойства которых определяются наличием в полупроводниковой пластине смежных слоёв с разными типами проводимости.

Как отмечалось выше, упрощенно симистор представляет собой два тиристора, подключенных параллельно навстречу друг другу. Поэтому для простоты принцип действия поясним на примере тиристора. Каждый тиристор ? это прибор с четырёхслойной структурой p-n-p-n. Схематически тиристор обозначен на рис. 1.

Крайняя область p-структуры, к которой подключается положительный полюс источника напряжения, называется анодом (А), крайняя область n-типа, к которой подключается отрицательный полюс источника - катодом (К). Вывод от внутренней области - p-управляющим электродом.

На рис. 2 изображена модель тиристора в виде схемы с двумя транзисторами с различными типами проводимости. База и коллектор транзистора VT1 соединяются соответственно с коллектором и базой транзистора VT2. В результате, база каждого транзистора питается коллекторным током другого транзистора. В схеме образуется цепь положительной обратной связи.


Если ток Iу через управляющий электрод отсутствует, то оба транзистора закрыты и ток через нагрузку не течёт - тиристор закрыт. Если подать ток Iу больше определенного уровня, то в схеме за счёт положительной обратной связи начинается лавинообразный процесс и оба транзистора открываются - тиристор открывается и остаётся в этом стабильном состоянии, даже если ток Iу больше не подавать.

Таким образом, тиристором можно управлять как постоянным током, так и импульсным. Для того, чтобы тиристор перевести в непроводящее состояние, необходимо снизить ток через него до такого уровня, при котором обратная связь не может больше удерживать схему в стабильном открытом состоянии. Это так называемый ток удержания.

Категория: Теоретические материалы | Добавил: Визинга (30.10.2011)
Просмотров: 6615 | Комментарии: 1 | Теги: материалу№2404, Симисторы, Тиристоры, допольнение | Рейтинг: 0.0/0


Всего комментариев: 1
0
1 Александр   (02.11.2012 13:50) [Материал]
Вот тут приводится схема работы симистора,на транзисторах.Какой тип транзистора можно взять,для работы с 220в?Ответьте пожалуйста по почте.

Пожалуйста остав

Все ссылки на книги и журналы, представлены на этом сайте, исключительно для ознакомления, авторские права на эти публикации принадлежат авторам книг и издательствам журналов! Подробно тут!
Жалоба

ьте свои комментарии !!!!

Имя *:
Email:
Код *:

Copyright Zloy Soft (Company) © 2008 - 2024