Каталог статей

Главная » Все схемы » Теория » Теоретические материалы

Выбранная схема!!!


5387
Стабилизаторы напряжения

Стабилизатором напряжения (СТН) называют устройство, поддерживающее с определенной точностью неизменным напряжение на нагрузке. Другими словами, стабилизатор напряжения - это устройство, на выходе которого напряжение остается неизменным при воздействии дестабилизирующих факторов.

Стабилизаторы бывают параметрические (ПСН) и компенсационные (КСН). Параметрический стабилизатор наиболее простой. Его работа основана на свойствах полупроводникового диода, а точнее на одной из его разновидностей - стабилитрона. Типичная наипростейшая схема параметрического стабилизатора приведена на рисунке 1.



Рис. 1 - Параметрический стабилизатор напряжения











В стабилитронах используется явление электрического лавинного пробоя. При этом в широком диапазоне изменения тока через диод напряжение изменяется на нем очень незначительно. Входное напряжение через ограничительный резик Rбал подводится к параллельно включенным стабилитрону и сопротивлению нагрузки. Поскольку напряжение на стабилитроне меняется незначительно, то и на нагрузке оно будет иметь тот же характер. При увеличении входного напряжения практически все изменение Uвх передается на Rбал, что приводит к увеличению тока в нем. Увеличение этого тока происходит за счет увеличения тока стабилизации при почти неизменном токе нагрузки. Другими словами, все изменение входного напряжения поглощается в ограничительном (балластном) резике.

Часто стабилитрон работает в таком режиме, когда напряжение источника гуляет (т. е. нестабильно), а сопротивление нагрузки постоянно. Для нормального режима стабилизации сопротивление резика Rогр должно иметь определенное значение. Если напряжение Uвх гуляет от Umin до Umax, то для расчета Rогр можно воспользоваться формулой:

Rогр = (Uвх.ср - Uст)/(Iср + Iн),

где Uвх.ср = 0.5(Uвх.min + Uвх.max) - среднее значение напряжения источника, Iср. = 0.5(Imin + Imax) - средний ток стабилитрона, Iн = Uн/Rн - ток нагрузки. При изменении входного напряжения в ту или иную сторону будет изменяться ток стабилитрона, на напряжение на нем, следовательно и на нагрузке будет оставаться постоянным.

Коли все изменения напряжения источника гасятся в Rогр, то наибольшее изменение напряжения (Uвх. max - Uвх.min = ΔUвх) должно соответствовать наибольшему возможному изменению тока, при котором еще сохраняется стабилизация (Imax - Imin = ΔIст). Отсюда следует, что стабилизация будет осуществляться только при соблюдении условия:

ΔUвх ≦ ΔIстRогр

Бывает режим стабилизации, когда входное напряжение постоянно, а сопротивление нагрузки изменяется, т. е. гуляет от Rн.min до Rн.max. Для такого режима Rогр определяется по формуле:

Rогр = (Uвх - Uст)/(Iср + Iн.ср),

где Iн.ср = 0.5(Iн.min + Iн.max), причем Iн.min = Uст/Rн.max, а Iн.max = Uст/Rн.min.










Иногда необходимо получить такое напряжение, на которое стабилитрон не рассчитан. В этом случае применяют последовательное соединение стабилитронов. Тогда напряжение стабилизации будет соответствовать сумме напряжений стабилизаций последовательно включенных стабилитронов.

Помимо рассмотренной схемы применяют каскадное включение стабилитронов. Говоря проще, берут несколько вышерассмотренных схем и включают одну за другой. При этом напряжение стабилизации предыдущего стабилитрона должно быть больше, чем следующего. Такие схемы применяют для увеличения коэффициента стабилизации. Бывает еще и мостовая схема, называемая мостовой параметрический стабилизатор. Теоретически у такой схемы коэффициент стабилизации стремится к бесконечности (хотя в это верится с трудом).

К сожалению большой мощи с вышерассмотренной схемы не снять. Поэтому придумали ниже приведенную схемку, которая проста до безобразия.


Рис. 2 - Параметрический стабилизатор напряжения с усилителем мощности

Как видим, ничего сложного. Просто нагрузку воткнули через транзистор, включенный по схеме ОК, выполняющего роль усилителя мощности.

Ахтунг: Как-то один препод втулял на полном серьезе, что схема на рисунке 2 - компенсационный стабилизатор напряжения. Тогда меня чуть не вывернуло. Не ведитесь на такую фигню. Про КСН чуть ниже. Там и будет понятно отличие ПСН от КСН.

Такая схема при малых и средних токах нагрузки работает как стабилизатор, а при больших токах нагрузки - как транзисторный фильтр (если параллельно стабилитрону влепить кондер). Если параллельно стабилитрону влепить переменный (подстроечный) резик, то выходное напряжение становиться регулируемым. Можно также влепить параллельно нагрузке кондер. Кондеров вообще можно повтыкать несколько штук, не повредит. Для уменьшения высокочастотной (ВЧ) составляющей выходного напряжения параллельно нагрузке втыкают кондер емкостью 0,01...1 мкФ. Это касается любых источников питания. В умных книжках пишут, что кондер должен быть керамический, хотя и бумажные, слюдяные, пленочные и прочие работают ничтяково.

Тип транзистора в схеме на рисунке 2 выбирается из учета мощности нагрузки. Например, для питания усилка (особенно большой мощности), когда ток нагрузки велик, втыкают составной транзистор. Составной транзистор - это когда берут два (или больше) транзистора и коллектор или эмиттер одного подключают к базе другого, а оставшийся вывод первого транзистора соединяют с оставшимся выводом следующего. На рисунке ниже это намного понятнее:


Это составной транзистор

И это составной транзистор

Теперь ясно? Вся фишка в том, что у составного транзистора коэффициент передачи равен произведению коэффициентов передачи каждого транзистора. То есть берем два говяненьких транзистора с коэффициентом усиления, скажем, 100, делаем составной и получаем транзистор с коэффициентом передачи 10 000. Суть ясна?

Итак, для больших токов используют составные транзисторы, ну а для питания парочки микросхем подойдет транзистор средней и малой мощности. Даже 315-е работают вполне удовлетворительно.

Бывает ешчё куча всяких схем ПСН, но наиболее употребительные две вышерассмотренные. Ну понятно, наверное, чтобы получить напряжение обратной полярности, просто переворачиваем стабилитрон вверх ногами (на рис.1), а транзистор втыкаем другого типа проводимости (рис.2; был n-p-n, ставим p-n-p). Полярность кондеров тоже необходимо поменять, не забывая при этом поменять полярность входного напряжения.

Компенсационные стабилизаторы напряжения

Компенсационный стабилизатор напряжения (КСН) работает по иному принципу, нежели ПСН. Из названия видно, что КСН чего-то там компенсирует. В общем-то принцип действия КСН основан на изменении сопротивления регулирующего элемента в зависимости от управляющего сигнала. А вот и определение из книжки - КСН относятся к стабилизаторам непрерывного действия и представляют собой устройства автоматического регулирования, которые с заданной точностью поддерживают напряжение на нагрузке независимо от изменения входного напряжения и тока нагрузки. КСН бывают последовательного и параллельного типа. Для рывка рассмотрим структурную схему типичного КСН последовательного типа.


Рис. 3 - КСН последовательного типа

РЭ - это регулирующий элемент, в качестве которого чаще всего используется транзистор ( биполярный или полевой), СУ - схема управления - собственно управляет работой РЭ. Иногда вместо СУ изображают усилитель постоянного тока (УПТ). Его задача - усилить сигнал рассогласования и подать его на РЭ. Д - делитель напряжения, ИОН - источник опорного напряжения. В качестве ИОН применяют схему параметрического стабилизатора. Источник опорного напряжения и делитель объединяют в так называемый измерительный элемент (ИЭ). Из-за включения РЭ последовательно с нагрузкой схема так и называется - последовательная.

Итак, источник опорного напряжения (ИОН) задает опорное напряжение, поступающее на вход СУ. С делителя часть выходного напряжения (соизмеримого с напряжением ИОН) также подается на вход схемы управления (СУ). В результате сравнения выходного напряжения (или его части) с опорным СУ управляет РЭ, сопротивление которого меняется в ту или иную сторону. Короче, если, к примеру, напряжение на входе скакнуло, эта фигня, естественно, передается на выход. Сигнал с делителя напряжения подается на схему управления и та, в свою очередь, сравнивая напряжение с ИОН, дает команду РЭ увеличить (уменьшить) сопротивление. В результате на нагрузке напряжение остается постоянным. Кроме того, измерительный элемент выделяет пульсации выпрямленного напряжения, поступающие на РЭ, который достаточно хорошо сглаживает их. При рассмотрении принципиальной схемы все станет ясней.

Параллельную схему КСН рассмотрим только в структуре. Ее изображение приведено на рисунке 4.


Рис.4 - КСН параллельного типа

Принцип действия такого стабилизатора основан на изменении проводимости РЭ (опять же, в соответствии с управляющим сигналом), вызывающее изменение падения напряжения на балластом резике. Эта схема хорошо работает при небольшом импульсном изменении тока нагрузки. Её основное достоинство - при импульсном изменении тока нагрузки не происходит изменения тока, потребляемого от сети.

Ну а теперь перейдем к самому главному: к схемам. Очень простая и понятная, так сказать, типичная схема приведена на рисунке 5.


Рис.5 - Принципиальная схема КСН.

Итак, разберем все деталюшки. Функции РЭ выполняет транзистор VT1. ИОН образован резиком R1 и стабилитроном VD1 (как видим, это параметрический стабилизатор). Делитель, соответственно, состоит из резиков R2-R4. На транзисторе VT2 собран усилитель постоянного тока (УПТ). ИОН задает для УПТ образцовое напряжение, которое вводится в цепь эмиттера транзистора VT2. На базу транзистора поступает напряжение с делителя. Если изменяется выходное напряжение, а соответственно, и напряжение на базе транзистора VT2, который сравнивая это напряжение с напряжением на эмиттере, задает РЭ такой режим работы, что сопротивление его перехода изменяется, и напряжение на нагрузке остается постоянным. С помощью резика R3 можно регулировать выходное напряжение.

В качестве регулирующего элемента при малом токе нагрузки (не больше 0,1-0,2 А) используются одиночные транзисторы. При больших токах нагрузки ставят составные и так называемые тройные составные транзисторы.

Такая схема обладает защитой от короткого замыкания (КЗ). При КЗ обесточивается стабилитрон VD1 и транзисторы VT1, VT2 закрываются. Правда злоупотреблять этим не следует (т. е. ради интереса замыкать плюс с минусом). Защита от КЗ кратковременная. Но работает!

На практике один из вариантов такой схемы можно встретить с резиком между коллектором и эмиттером РЭ. Он необходим для нормальной работы стабилизатора при отрицательных температурах. Иногда пишут, что резик, шунтирующий переход коллектор-эмиттер РЭ, служит для запуска стабилизатора. Ну в принципе, наверное, понятно, что для смены полярности необходимо поменять тип транзисторов, направление включения стабилитрона и, соответственно, полярность включения кондеров (на схеме не показаны).

Итак, практическая схема вышеописанного стабилизатора приведена ниже:


Рис. 6 - КСН

Эта схема содрана с блока питания магнитофона приставки "Карат МП-201С" и, как видно, отличие состоит лишь в кондерах и резике R1. Резиком R4 подстраивают выходное напряжение. Подбирая стабилитрон VD1 можно изменять выходное напряжение ( при изменении входного, соответственно). При этом надо менять сопротивление резика R1. Две черточки на его корпусе обозначают мощность, т. е. 2 Вт. При больших токах нагрузки резик R1 греется. Естественно, транзистор VT1 необходимо установить на радиатор, площадью хотя бы 50 см2, т. к. и он может "пыхнуть".

Одной из разновидностей схем такого рода является так называемая схема с "холодным" коллектором. Её отличием является то, что регулирующий транзистор включается в цепь общего провода, а не "горячего". А это значит, что изолировать транзистор от радиатора или радиатор от корпуса устройства не надо, чего не скажешь о схемах на рисунках 5 и 6. В этих схемах транзисторы вылетают, как с добрым утром, если забыли изолировать коллектор (для тех, кто в танке, коллектор мощных транзисторов электрически соединен с корпусом транзистора или его частью для лучшего теплового контакта). На рисунке 7 эта схема и показана. Схема слизана с журнала Радио аж за 1984 год (Радио №12/1984).


Рис. 7 - КСН с "холодным" коллектором

Как видно, практически никаких отличий от предыдущей схемы. В качестве регулирующего использован составной транзистор КТ827А. Его можно легко заменить двумя - КТ815 и КТ819. Недостаток схемы - меньший ток нагрузки, нежели у схемы на рисунке 6. Да к тому же для такого стабилизатора необходим отдельный выпрямитель . Другими словами, если нужно несколько стабилизаторов, то для каждого придется забабахать свой выпрямитель. Зато все регулирующие транзисторы можно поставить на один теплоотвод, не изолируя их.















Категория: Теоретические материалы | Добавил: Cosmogor (13.05.2013)
Просмотров: 21282 | Комментарии: 1 | Рейтинг: 5.0/3


Всего комментариев: 1
0
1 serjsulim   (27.03.2016 22:13) [Материал]
Спасибо, для начинающих статья отличная

Пожалуйста остав

Все ссылки на книги и журналы, представлены на этом сайте, исключительно для ознакомления, авторские права на эти публикации принадлежат авторам книг и издательствам журналов! Подробно тут!
Жалоба

ьте свои комментарии !!!!

Имя *:
Email:
Код *:

Copyright Zloy Soft (Company) © 2008 - 2024