Данный вольтметр может применяться для измерения напряжения радиолюбительских блоков питания, контроля заряда аккумуляторов и т.п. Устройство реализовано на микроконтроллере ATMEGA8 и светодиодном индикаторе с общим анодом FYT3031-BSR-21.
Технические характеристики:
Напряжение питания: 6..14 В
Потребляемый ток:
Число разрядов индикатора: 3
Диапазон измерения: от 0 до 50 В
Шаг измерения: 0,1 В
Расчетная погрешность 0,3%
Принципиальная схема вольтметра показана на рис.1.
Рис.1.
Краткое описание схемы.
Входное напряжение питания ограничивается и стабилизируется микросхемой 7805. Диод VD1 служит для защиты от перепутывания полярности.
Измеряемое напряжение через делитель R1 R2 поступает на вход АЦП микроконтроллера и преобразуется в цифровой код. Для сглаживания пульсаций код усредняется по 16 замерам. Далее код масштабируется и величина напряжения раскладывается на десятичные разряды (десятки, единицы и десятые доли вольт). Полученные величины поочередно выводятся в соответствующие разряды индикатора методом динамической индикации. Резисторы R4..R11 ограничивают ток сегментов индикатора до безопасных значений.
Детали и настройка.
Резистор R1 желательно применить прецизионный, например типа С2-36 с допуском 0,5% или С2-29В-0,125 с допуском 0,25-0,5%. Резистор R2 подстроечный многооборотный, например типа 3296W. Резисторы R3-R11 мощностью 0,125-0,5Вт с допуском ±10%, например С2-33, CF1/4 и т.п. Конденсаторы С1 и С2 любые электролитические на температуру 105С и емкостью 22-47мкФ. Конденсатор С3 керамический, например К10-17Б. Диод VD1 заменить на 1N4148 или более мощные КД247, 1N4001 и т.п. Стабилизатор напряжения на 5В DA1 любой в корпусе TO-220, например КР142ЕН5А и т.п.
Для настройки устройства на его вход подают образцовое напряжение около 50В (но не более этого значения :) ) и регулируя R2 добиваются совпадения показаний вольтметра с образцовым напряжением. После этого ось подстроечного резистора контрится быстросохнущей нитрокраской или цапон лаком.
Замечания по конструированию и результаты испытаний.
1) При динамическом управлении светодиодными индикаторами надо учесть эффект накопления заряда в светодиодах. Если мы просто снимем напряжение с сегмента, то в накопленные в диффузной емкости pn перехода заряды будут некоторое время вызывать свечение индикатора, пока емкость перехода полностью не разрядится.
Это приводит к неприятной паразитной подсветке индикатора. Поэтому, для быстрого рассасывания этого заряда и четкого гашения индикатора надо подавать на сегменты напряжение обратной полярности (например для индикатора с общим анодом на сегменты-катоды надо подавать высокий уровень 5В, а на аноды низкий уровень 0В)
2) Точность микроконтроллерных вольтметров с 10 разрядным АЦП не очень высока и составляет примерно 0,3%
Она вычисляется так - это ошибка дискретизации 1LSB + погрешность нелинейности, по даташиту это 2LSB. Общая ошибка будет 3LSB, а относительная погрешность 3/1024~0,3%
Абсолютная погрешность показаний 50В*0,3=±0,15В
При этом разница между завышенными и заниженными показаниями вдвое больше и равна 0,3В. Иначе говоря, настраивать прибор надо так, чтобы отклонения его показаний были бы не односторонними, а симметричными относительно заданной характеристики.
Результаты сравнения показаний вольтмера и промышленного прибора Щ300 показаны в табл.1
Показания Щ300, В | Показания вольтметра, В | Относительная погрешность, % |
2,97 | 2,8 | -0,34 |
7,96 | 7,8 | -0,32 |
13,03 | 12,9 | -0,26 |
18,04 | 17,9 | -0,28 |
23,03 | 22,9 | -0,26 |
28,01 | 28,0 | -0,02 |
33,03 | 33,0 | -0,06 |
38,00 | 38,0 | 0 |
43,00 | 43,1 | 0,2 |
48,00 | 48,1 | 0,2 |
Проверочная макетная платка :)
Прошивка и исходный текст программы.
Микроконтроллер настроен на работу с внутренним RC генератором частотой 2МГц. Фьюз биты устанавливаются в следующие значения: CKSEL=0100, SUT=10.
Блок схема программы, ее исходный текст на языке С (для компилятора WinAVR) и
Литература.