На сайте производителя микросхем я наткнулся на довольно интересную (и не очень бесполезную) програмку по моделированию нагрева микросхемы (Audio Power Amplifiers Simulator):
http://www.st.com/stonline/products/support/designin/audpowl.htm . Там дан список микросхем которые можно промоделировать в on-line режиме (для этого должна быть установлена последняя версия Java). Из него выбираем нужную микросхему и видим следующее:
В правом нижнем углу выбираем тип сигнала с которым предстоит работа (по первому впечатлению музыка имеет довольно правдоподобные статистические характеристики). Вверху слева задаем напряжение питания, сопротивление нагрузки, величину перегрузки (которая задается почему-то уровнем нелинейных искажений - это понятно для синусоиды, не очень понятно для музыки и совершенно неприемлимо для прямоугольного сигнала), температуру воздуха внутри усилителя и тепловое сопротивление радиатор-окружающая_среда (RTHEXT).
Нажимаем кнопку Calculate.
В результате получаем среднюю и пиковую мощности, пик-фактор, коэффициент нелинейных искажений, пиковый и средний потребляемые токи и температуру микросхемы.
Что полезного можно получить?
Среднюю и пиковую выходные мощности для оценки громкости. Эта мощность может получиться полько при питании микросхемы от хорошего стабилизированного источника, что бывает редко (так что в реальности она куда меньше из-за просадок напряжени питания).
Средний и максимальный потребляемые токи (для расчета блока питания).
Температуру микросхемы при заданном радиаторе.
Рассмотрим температуру подробнее.
При установке микросхемы на радиатор, микросхема лучше охлаждается. Эффективность охлаждения оценивается тепловым сопротивлением: перегревом (т.е. насколько температура микросхемы выше, чем температура окружающей среды) по отношению к подведенной мощности - градусами на ватт. Если, например, при подведении мощности 6 Вт температура на 30 градусов выше, чем температура окружающей среды, то тепловое сопротивление Rt = 30 / 6 = 5 град/Вт.
Тепловое сопротивление радиатора точно рассчитать невозможно. Оно либо известно изначально (производитель постарался), либо его можно измерить экспериментально, либо его можно оценить, зная площадь радиатора. В последнем случае:
Rt_радиатора = 1400 / S[см2] , град/Вт
Здесь S - площадь всего радиатора (точнее той части, которая свободно обдувается воздухом) в квадратных сантиметрах. Формула очень приблизительная, так как степень охлаждения зависит от формы радиатора, толщины пластин (тонкие хуже передают тепло в окружающую среду), расположения в корпусе, и прочее.
Кроме того, нужно учесть потери тепла при передаче его от корпуса к радиатору. При этом формула усложняется:
RTHEXT = 1400 / S[см2] + (0,2... 1,2), град/Вт
Меньшее значение (=0,2) берется, если не используется изоляционная прокладка, если изоляционная прокладка есть, то в зависимости от ее толщины берем слагаемое = 0,8...1,2. Эти цифры подразумевают, что при монтаже используется термопаста.
Результаты получаются неутешительными: для микросхемы, установленной на радиатор с площадью 280 см2 (процессорный радиатор средних размеров) без прокладки, при напряжении питания 27 вольт и сопротивлении нагрузки 4 ома, на музыкальном сигнале (с минимальными искажениями) температура достигает 153 градусов и срабатывает тепловая защита (это при температуре окружающей среды 40 градусов, что вполне реально)!
Обратите внимание на величину средней мощности PowerRMS = 4,1 Вт - это реальная мощность музыки!
Что же делать? Вариант 1: не делать звук громко. Это ведь при расчете предполагается, что регулятор громкости у нас на максимуме. А если сделать тише, то и температура снизится. Но есть опасность перегрева, если забыв о плохом охлаждении прибавим громкость! Вариант 2: поставить вентилятор. Причем не обязательно его включать на номинальное напряжение питания. Можно подавать пониженное напряжение (примерно от 6 вольт), при этом все равно эффективность охлаждения улучшится, а шуметь будет не сильно. Вариант 3: применить радиатор большей площади!
Помните, что если используется вентилятор для охлаждения, то он создает большое количество горячего воздуха в корпусе. И если для этого воздуха нет подходящего выхода, температура внутри корпуса будет расти, что вредно для электроники, и ухудшит охлаждение микросхемы. Хорошие результаты дает размещение вентилятора над радиатором, чтобы выдувать нагретый воздух наружу.