Приём цифровых логических сигналов
Исторически, технологически и концептуально МК являются цифровыми приборами, следовательно, они должны уметь на равных общаться с себе подобными логическими микросхемами. На практике к МК чаще всего подключают цифровые микросхемы средней степени интеграции. Среди них можно условно выделить три поколения [3-34].
Первое поколение (Табл. 3.3) берёт начало от базовых ТТЛ-микросхем серии 74хх/54хх фирмы Texas Instruments. Дальнейшие модификации отличались от прародителя пониженным энергопотреблением, повышенным быстродействием, расширенной номенклатурой типовых элементов. По традиции в названиях новых микросхем были оставлены числа «74» (коммерческое применение) и «54» (военная техника), но с другими входящими буквами, например, 74LS, 74AS и т.д. Из КМОП-микросхем к первому поколению относятся серии 4000, 4000А.
Таблица 3.3. Параметры серий логических микросхем первого поколения
Второе поколение (Табл. 3.4) связывают с расцветом КМОП-технологии, когда удалось сделать первую серию микросхем 74НСхххх, совместимую с ТТЛ по функциональному назначению и цоколёвке выводов. Основное достоинство — сверхнизкое потребление тока в статике и высокое быстродействие в динамике. Дополнительными преимуществами являются широкий диапазон питающих напряжений и симметричность токов нагрузки.
Третье поколение (Табл. 3.5) обязано своим появлениям крупным технологическим достижениям последнего десятилетия. Новые производственные допуски изготовления транзисторов и пониженное напряжение питания от 1.2... 1.4 до 2.7...3.6 В были заимствованы от современных СБИС, ПЛИС, МК.
Что дальше? На очереди переход к четвёртому поколению логических микросхем, для которых нижний предел напряжения питания начинается с 0.9 В. Именно такие микросхемы идеально подходят для работы с гальваническими батареями, ведь они в начале эксплуатации имеют напряжение на зажимах 1.5... 1.6 В, а в конце — 0.9 В. В микроконтроллерной технике первым «сверхнизковольтным» МК широкого применения стал С8051F930 фирмы Silicon Laboratories.
На сегодняшний день в секторе микросхем стандартной логики второго и третьего поколения активно позиционируются фирмы: Texas Instruments, Fairchild, STMicroelectronics, ON Semiconductor, «Интеграл». Интересно отметить, что морально устаревшие микросхемы первого поколения всё ещё не сняты с производства и выпускаются небольшими партиями для дооснащения и ремонта.
Основной проблемой, с которой сталкивается разработчик при подключении стандартных логических элементов к МК, является сопряжение уровней. Необходимо, чтобы НИЗКИЙ и ВЫСОКИЙ уровни соответствовали допустимым для конкретного типа МК и не выходили за граничные пределы. От чего это зависит?
Во-первых, от серии подключаемой микросхемы — ТТЛ, МОП или КМОП.
Во-вторых, от питания, если оно разное у логической микросхемы и у МК.
В-третьих, от передаточной характеристики линии порта МК (обычная линейная зависимость или с характеристикой триггера Шмитта).
На Рис. 3.16, а...м показаны схемы сопряжения стандартных логических микросхем с МК по входу. Предполагается, что все линии портов МК примерно эквивалентны по электрическим параметрам обычным вентилям из КМОП-серий 74НС/74АС с триггерами Шмитта на входе.
а) сопряжение «КМОП — КМОП» производится напрямую (R1, = 0) или с антизвонным резистором R1 при больших частотах, расстояниях или помехах;
б) сопряжение «ТТЛ — КМОП» в случае, если ТТЛ-микросхема имеет выход с открытым коллектором. Чем меньше сопротивление резистора R1, тем круче фронты сигнала;
в) триггер Шмитта DDI выполняет функцию преобразователя сигналов произвольной формы в импульсную последовательность. Подбором сопротивлений в делителе R1, R2 можно выставить ограничение сигнала, близкое к симметричному;
г) микросхема DD1 подключается напрямую к МК и используется как делитель входной частоты 30... 120 МГц на 16 (возможно на 8; 4; 2 с других выводов DD1, соответственно, 12; 13; 14);
д) верхний и нижний элементы «4ИЛИ-НЕ» микросхемы DD1 имеют отличающиеся друг от друга пороги срабатывания. Это связано с разным числом параллельно включённых входов, для линии «А» — один, для линии «В» — три. Если провести связь, как показано на схеме пунктиром, то можно программно измерить длительность фронта входного импульса по двум порогам;
е) сопряжение с КМОП-инвертором DD1, допускающим повышенную амплитуду на входе;
ж) сопряжение с КМОП-повторителем DD1, допускающим повышенную амплитуду на входе. Возможная замена микросхемы DD1 — КР1561ПУ4;
з) сопряжение «ТТЛ — КМОП» (стандартные вентили) производится с подтягивающим резистором R1 сопротивлением 1...10 кОм. Иногда резистор R1 может отсутствовать, что проверяется экспериментально по устойчивости функционирования;
и) конденсатор С/ укорачивает длительность входного сигнала, поскольку образуется дифференцирующая цепочка с внутренним «pull-up» резистором МК;
к) сопряжение «МОП — КМОП». Это может понадобиться при работе с устаревшей БИС DD1, которая питается от источника отрицательного напряжения;
л) согласование уровней на ключевом транзисторе VT1 при разных питаниях вентиля DDI и МК. В программе надо учесть дополнительную «транзисторную» инверсию сигнала;
м) сопряжение «ТТЛ — КМОП» (DD1 и МК) производится через буферный КМОП-элемент DD2, имеющий входные пороги, совместимые с ТТЛ, а выходные логические уровни, совместимые с КМОП.