Каталог статей


Выбранная схема!!!


1579
Индикаторы и сигнализаторы на регулируемом стабилитроне TL431

Интегральный стабилизатор TL431 применяется в основном в блоках питания. Однако, для него можно найти еще немало применений. Некоторые из таких схем приведены в этой статье.

В этой статье будет рассказано о простых и полезных устройствах, выполненных с применением микросхемы TL431. Но в данном случае не надо пугаться слова «микросхема», у нее всего три вывода, и внешне она похожа на простой маломощный транзистор в корпусе TO90.

Сначала немного истории

Уж так повелось, что всем электронщикам известны магические числа 431, 494. Что это такое?

Компания TEXAS INSTRUMENTS стояла у самых истоков полупроводниковой эры. Все это время она находится на первых местах в списке мировых лидеров в производстве электронных компонентов, прочно удерживаясь в первой десятке или, как чаще говорят, в мировом рейтинге TOP-10. Первая интегральная микросхема была создана еще в 1958 году сотрудником этой компании Джеком Килби.

Сейчас компания TI выпускает широкий ассортимент микросхем, название которых начинается с префиксов TL и SN. Это соответственно аналоговые и логические (цифровые) микросхемы, которые навсегда вошли в историю компании TI и до сих пор находят широчайшее применение.

В числе самых первых в списке «магических» микросхем следует, наверно, считать регулируемый стабилизатор напряжения TL431. В трехвыводном корпусе этой микросхемы спрятано 10 транзисторов, а функция, выполняемая ею, одинакова с обычным стабилитроном (диод Зенера).

Но за счет подобного усложнения микросхема обладает более высокой термостабильностью и повышенной крутизной характеристики. Главная же ее особенность в том, что при помощи внешнего делителя напряжение стабилизации можно изменять в пределах 2,5…30 В. У последних моделей нижний порог составляет 1,25 В.

TL431 была создана сотрудником компании TI Барни Холландом в начале семидесятых годов. Тогда он занимался копированием микросхемы стабилизатора другой компании. У нас бы сказали сдирания, а не копирования. Так вот Барни Холланд позаимствовал из оригинальной микросхемы источник опорного напряжения, а уже на его основе создал отдельную микросхему-стабилизатор. Сначала она называлась TL430, а после некоторых усовершенствований получила название TL431.

С тех пор прошло немало времени, а нет сейчас ни одного компьютерного блока питания, где бы она не нашла применения. Она также находит применение практически во всех маломощных импульсных источниках питания. Один из таких источников теперь есть в каждом доме, - это зарядное устройство для сотовых телефонов. Такому долгожительству можно только позавидовать. На рисунке 1 показана функциональная схема TL431.


Рисунок 1. Функциональная схема TL431.

Также Барни Холландом была создана не менее известная и до сих пор востребованная микросхема TL494. Это двухтактный ШИМ - контроллер, на базе которого было создано множество моделей импульсных источников питания. Поэтому число 494 также по праву относится к «магическим».

А теперь перейдем к рассмотрению различных конструкций на базе микросхемы TL431.

Индикаторы и сигнализаторы

Микросхема TL431 может применяться не только по своему прямому назначению как стабилитрон в блоках питания. На ее основе возможно создание различных световых индикаторов и даже звуковых сигнализаторов. С помощью подобных устройств можно отслеживать много различных параметров.

В первую очередь это просто электрическое напряжение. Если же какую либо физическую величину с помощью датчиков представить в виде напряжения, то можно сделать устройство, контролирующее, например, уровень воды в емкости, температуру и влажность, освещенность или давление жидкости или газа.

Сигнализатор превышения напряжения

Работа такого сигнализатора основана на том, что при напряжении на управляющем электроде стабилитрона DA1 (вывод 1) менее 2,5 В стабилитрон закрыт, через него протекает лишь небольшой ток, как правило, не более 0,3…0,4 мА. Но этого тока достаточно для очень слабого свечения светодиода HL1. Чтобы этого явления не наблюдалось, достаточно параллельно светодиоду подключить резистор сопротивлением примерно 2…3 КОм. Схема сигнализатора превышения напряжения показана на рисунке 2.

Рисунок 2. Сигнализатор превышения напряжения.

Если же напряжение на управляющем электроде превысит 2,5 В, стабилитрон откроется и засветится светодиод HL1. необходимое ограничение тока через стабилитрон DA1 и светодиод HL1 обеспечивает резистор R3. Максимальный ток стабилитрона составляет 100 мА, в то время как тот же параметр у светодиода HL1 всего 20 мА. Именно из этого условия и рассчитывается сопротивление резистора R3. более точно это сопротивление можно рассчитать по нижеприведенной формуле.

R3 = (Uпит – Uhl - Uda)/Ihl. Здесь использованы следующие обозначения: Uпит – напряжение питания, Uhl – прямое падение напряжения на светодиоде, Uda напряжение на открытой микросхеме (обычно 2В), Ihl ток светодиода (задается в пределах 5…15 мА). Также не следует забывать о том, что максимальное напряжение для стабилитрона TL431 всего 36 В. Этот параметр также превышать нельзя.

Уровень срабатывания сигнализатора

Напряжение на управляющем электроде, при котором загорается светодиод HL1 (Uз) задается делителем R1, R2. параметры делителя рассчитываются по формуле:

R2 = 2,5*R1/(Uз – 2,5). Для более точной настройки порога срабатывания можно вместо резистора R2 установить подстроечный, номиналом раза в полтора больше, чем получилось по расчету. После того, как настойка произведена, его можно заменить постоянным резистором, сопротивление которого равно сопротивлению введенной части подстроечного.

Иногда требуется контролировать несколько уровней напряжения. В этом случае потребуются три таких сигнализатора, каждый из которых настроен на свое напряжение. Таким образом возможно создание целой линейки индикаторов, линейной шкалы.

Для питания цепи индикации, состоящей из светодиода HL1 и резистора R3, можно применить отдельный источник питания, даже нестабилизированный. В этом случае контролируемое напряжение подается на верхний по схеме вывод резистора R1, который следует отключить от резистора R3. При таком включении контролируемое напряжение может находиться в пределах от трех, до нескольких десятков вольт.

Индикатор пониженного напряжения


Рисунок 3. Индикатор пониженного напряжения.

Отличие этой схемы от предыдущей в том, что светодиод включен по-другому. Такое включение называется инверсным, поскольку светодиод зажигается в том случае, когда микросхема закрыта. В случае, если контролируемое напряжение превышает порог установленный делителем R1, R2 микросхема открыта, и ток протекает через резистор R3 и выводы 3 – 2 (катод – анод) микросхемы.

На микросхеме в этом случае присутствует падение напряжения 2 В, которого не достаточно для зажигания светодиода. Чтобы светодиод гарантированно не зажегся, последовательно с ним установлены два диода. Некоторые типы светодиодов, например синие, белые и некоторые типы зеленых, зажигаются, когда напряжение на них превышает 2,2 В. В этом случае вместо диодов VD1, VD2 устанавливаются перемычки из проволоки.

Когда контролируемое напряжение станет меньше установленного делителем R1, R2 микросхема закроется, напряжение на ее выходе будет намного больше 2 В, поэтому светодиод HL1 зажжется.

Если требуется контролировать только изменение напряжения индикатор можно собрать по схеме, представленной на рисунке 4.


Рисунок 4. Индикатор изменения напряжения.

В этом индикаторе применен двухцветный светодиод HL1. Если контролируемое напряжение превышает пороговое значение, светится красный светодиод, а если напряжение понижено, то горит зеленый.

В случае, когда напряжение находится вблизи заданного порога (примерно 0,05…0,1 В) погашены оба индикатора, так как передаточная характеристика стабилитрона имеет вполне определенную крутизну.

Если требуется следить за изменением какой-либо физической величины, то резистор R2 можно заменить датчиком, изменяющим сопротивление под действием окружающей среды. Подобное устройство показано на рисунке 5.


Рисунок 5. Схема контроля параметров окружающей среды.

Условно на одной схеме показано сразу несколько датчиков. Если это будет фототранзистор, то получится фотореле. Пока освещенность большая, фототранзистор открыт, и его сопротивление невелико. Поэтому напряжение на управляющем выводе DA1 меньше порогового, вследствие этого светодиод не светит.

По мере снижения освещенности сопротивление фототранзистора увеличивается, что приводит к возрастанию напряжения на управляющем выводе DA1. Когда это напряжение превысит пороговое (2,5 В), стабилитрон открывается и зажигается светодиод.

Если вместо фототранзистора к входу устройства подключить терморезистор, например серии ММТ, получится индикатор температуры: при понижении температуры светодиод будет загораться.

Эту же схему можно применить в качестве датчика влажности, например, земли. Для этого вместо терморезистора или фототранзистора следует подключить электроды из нержавеющей стали, которые на некотором расстоянии друг от друга воткнуть в землю. При высыхании земли до уровня, определенного при настройке, светодиод зажжется.

Порог срабатывания устройства во всех случаях устанавливается с помощью переменного резистора R1.

Кроме перечисленных световых индикаторах на микросхеме TL431 возможно собрать и звуковой индикатор. Схема такого индикатора показана на рисунке 6.


Рисунок 6. Звуковой индикатор уровня жидкости.

Для контроля уровня жидкости, например воды в ванне, к схеме подключается датчик из двух нержавеющих пластин, которые расположены на расстоянии нескольких миллиметров друг от друга.

Когда вода достигнет датчика, его сопротивление уменьшается, а микросхема через резисторы R1 R2 входит в линейный режим. Поэтому возникает автогенерация на резонансной частоте пьезокерамического излучателя НА1, на которой и зазвучит звуковой сигнал.

В качестве излучателя можно применить излучатель ЗП-3. питание устройства от напряжения 5…12 В. Это позволяет питать его даже от гальванических батарей, что делает возможным использование его в разных местах, в том числе и в ванной.

Основная область применения микросхемы TL434, конечно же блоки питания. Но, как видим, только этим возможности микросхемы не ограничиваются.


Категория: Конструкции для дома | Добавил: Визинга (07.01.2011)
Просмотров: 13363 | Рейтинг: 3.7/3


Всего комментариев: 0

Все ссылки на книги и журналы, представлены на этом сайте, исключительно для ознакомления, авторские права на эти публикации принадлежат авторам книг и издательствам журналов! Подробно тут!
Жалоба

Пожалуйста оставьте свои комментарии !!!!

Имя *:
Email:
Код *:


ElectroTOP - Рейтинг сайтов
Copyright Zloy Soft (Company) © 2008 - 2016