Каталог статей

Главная » Все схемы » Схемы устройств на микроконтроллерах » Устройства на микроконтроллерах

Выбранная схема!!!


4856
ВОЛЬТАМПЕРМЕТР НА МИКРОКОНТРОЛЛЕРЕ В ЛАБОРАТОРНЫЙ БП

 В наш век прогресса у любого радиолюбителя самый главный прибор при наладке устройств это лабораторный блок питания (БП). БП может быть как самодельный, так и заводского исполнения. Отличаются по сложности, может быть собран всего на одном линейном регуляторе напряжения, например LM317T, может быть собран на операционных усилителях, на транзисторах. БП может иметь защиту от КЗ, или наоборот, регулируемое ограничение выходного тока. А более совершенные БП имеют переключение режима «Защита от КЗ/Ограничение выходного тока». Но почти все БП оборудованы в лучшем случае стрелочным вольтметром. Цифровой вольтметр сложен в изготовлении и настройке, и чаще всего требует применения специализированных микросхем АЦП, например, КР572ПВ2А. 

     Но вся сложность заключается не в изготовлении платы, а в необходимости применения двухполярного питания +5В, -5В для питания указанной микросхемы. Для этого нужен отдельный маломощный БП или отдельные обмотки трансформатора. Таким образом, данные АЦП не очень зарекомендовали себя в радиолюбительской практике. Что же происходит? На дворе XXI-й век, а дизайна любительских БП не коснулся прогресс? Необходимо исправить эту ситуацию! Задумавшись над этим, я пришел к выводу, что надо сделать собственное устройство индикации параметров БП на микроконтроллере. В связи с этим и была разработан модуль – цифровой вольтамперметр. Который и будет рассмотрен далее более подробно. Данная разработка предложена вам для повторения и возможной доработки, так как она выполнена в пилотном варианте и требует доработок..(Планировалась функция вычисления потребляемой мощности и отображение на индикаторе, но до этого не дошли лапы, а при испытании обнаружены баги при измерении тока.) Но даже в таком варианте данная схема вполне работоспособна и может быть предложена для повторения даже начинающим радиолюбителям. Основной упор делался на то, чтобы сохранить минимальную сложность, чтобы не оставить за бортом начинающих радиолюбителей. Вот что у меня получилось.

     Схема и рисунок печатной платы представлены далее.


     Устройство обеспечивает следующие параметры и функции:
1. Измерение и индикация выходного напряжения блока питания в диапазоне от 0 до 100В, с дискретностью 0,01В 
2. Измерение и индикация выходного тока нагрузки блока питания в диапазоне от 0 до 10А с дискретностью 10 мА 
3. Погрешность измерения — не хуже ±0,01В (напряжение) или ±10мА (ток) 
4. Переключение между режимами измерения напряжение/ток осуществляется с помощью кнопки с фиксацией в нажатом положении.
5. Вывод результатов измерения на большой четырехразрядный индикатор. При этом три разряда используются для отображения значения измеряемой величины, а четвертый – для индикации текущего режима измерения.
6. Особенность моего вольтамперметра – автоматический выбор предела измерения. Смысл в том, что напряжения 0-10В отображаются с точностью 0,01В, а напряжения 10-100В с точностью 0,1В.
7. Реально делитель напряжения рассчитан с запасом, если измеряемое напряжение увеличивается больше 110В (ну может кому-то надо меньше, можно исправить это в прошивке), на индикаторе отображаются символы перегрузки – O.L (Over Load). Аналогично сделано и с амперметром, при превышении измеряемого тока больше 11А вольтамперметр переходит в режим индикации перегрузки.
Устройство осуществляет измерение и индикацию только положительных значений тока и напряжения, причем для измерения тока используется шунт в цепи «минуса».
Устройство выполнено на микроконтроллере DD1 (МК) ATMega8-16PU.


 Технические параметры ATMEGA8-16PU:

Ядро AVR 
Разрядность 8 
Тактовая частота, МГц 16 
Объем ROM-памяти 8K 
Объем RAM-памяти 1K 
Внутренний АЦП, кол-во каналов 23 
Внутренний ЦАП, кол-во каналов 23 
Таймер 3 канала 
Напряжение питания, В 4.5…5.5 
Температурный диапазон, C 40...+85 
Тип корпуса DIP28

     Количество дополнительных элементов схемы — минимально. (Более полные данные на МК можно узнать из даташита на него). Резисторы на схеме — типа МЛТ-0,125 или импортные аналоги, электролитический конденсатор типа К50-35 или аналогичный, напряжением не менее 6,3В, емкость его может отличаться в большую сторону. Конденсатор 0,1 мкФ — керамический импортный. Вместо DA1 7805 можно применить любые аналоги. Максимальное напряжение питания устройства определяется максимальным допустимым входным напряжением этой микросхемы. О типе индикаторов сказано далее. При переработке печатной платы возможно применение иных типов компонентов, в том числе SMD.

     Резистор R… импортный керамический, сопротивление 0,1Ом 5Вт, возможно применение более мощных резисторов, если габариты печатки позволяют установить.Также нужно изучить схему стабилизации тока БП, возможно там уже есть токоизмерительный резистор на 0,1 Ом в минусовой шине. Можно будет использовать по возможности этот резистор. Для питания устройства может использоваться либо отдельный стабилизированный источник питания +5В (тогда микросхема стабилизатора питания DA1 не нужна), либо нестабилизированный источник +7…30В (с обязательным использованием DA1). Потребляемый устройством ток не превышает 80мА. Следует обращать внимание на то, что стабильность питающего напряжения косвенно влияет на точность измерения тока и напряжения. Индикация — обычная динамическая, в определенный момент времени светится только один разряд, но из-за инерционности нашего зрения мы видим светящимися все четыре индикатора и воспринимаем как нормальное число.

     Использовал один токоограничительный резистор на один индикатор и отказался от необходимости дополнительных транзисторных ключей, т. к. максимальный ток порта МК в данной схеме не превышает допустимые 40 мА. Путем изменения программы можно реализовать возможность использования индикаторов как с общим анодом, так и с общим катодом. Тип индикаторов может быть любым — как отечественным, так и импортным. В моем варианте применены двухразрядные индикаторы VQE-23 зеленого свечения с высотой цифры 12 мм (это древние, мало-яркие индикаторы, найденные в старых запасах). Здесь приведу его технические данные для справки;

Индикатор VQE23, 20x25mm, ОК, зеленый
Двухразрядный 7-сегментный индикатор. 
Тип Общий катод
Цвет зеленый (565nm)
Яркость 460-1560uCd
Десятичные точки 2
Номинальный ток сегмента 20mA

     Ниже указано расположение выводов и габаритный чертеж индикатора:


1. Анод H1 
2. Анод G1 
3. Анод A1 
4. Анод F1 
5. Анод B1 
6. Анод B2 
7. Анод F2 
8. Анод A2 
9. Анод G2 
10. Анод H2 
11. Анод C2 
12. Анод E2 
13. Анод D2 
14. Общ катод К2 
15. Общ катод К1 
16. Анод D1 
17. Анод E1 
18. Анод C1 

     Возможно использование вообще любых индикаторов как одно-, двух-, так и четырехразрядных с общим катодом, придется только разводку печатной платы под них делать. Плата изготовлена из двухстороннего фольгированного стеклотекстолита, но возможно применение одностороннего, просто надо будет несколько перемычек запаять. Элементы на плате устанавливаются с обеих сторон, поэтому важен порядок сборки:

• Сначала необходимо пропаять перемычки (переходные отверстия), которых много под индикаторами и возле микроконтроллера. 
• Затем микроконтроллер DD1. Для него можно использовать цанговую панельку, при этом ее надо устанавливать не до упора в плату, чтобы можно было пропаять выводы со стороны микросхемы. Т.к. не было под лапой цанговой панельки, было решено впаять МК намертво в плату. Для начинающих не рекомендую, в случае неудачной прошивки 28-ногий МК очень неудобно заменять.
• Затем все прочие элементы.

     Эксплуатация данного модуля вольтамперметра не требует объяснения. Достаточно правильно подключить питание и измерительные цепи. Разомкнутый джемпер или кнопка – измерение напряжения, замкнутый джемпер или кнопка – измерение тока. Прошивку можно залить в контроллер любым доступным для вас способом. Из Fuse-битов, что необходимо сделать, так это включить встроенный генератор 4 МГц. Ничего страшного не случится, если их не прошить, просто МК будет работать на 1МГц и цифры на индикаторе будут сильно мерцать. 

     А вот и фотография вольтамперметра:


     Я не могу дать конкретных рекомендаций, кроме вышесказанных, о том, как подключить устройство к конкретной схеме блока питания — ведь их такое множество! Надеюсь, эта задача действительно окажется такой легкой, как это я себе представляю.

     P.S. В реальном БП данная схема не проверялась, собрана как макетный образец, в будущем планируется сделать простой регулируемый БП с применением данного вольтамперметра. Буду благодарен тем, кто испытает в работе данный вольтамперметр и укажет на существенные и не очень недостатки. За основу взята схема от ARV Моддинг блока питания с сайта радиокот. Прошивку для микроконтроллера ATmega8 c исходными кодами для CodeVision AVR C Compiler 2.04, и плату в формате ARES Proteus можно скачать на ФОРУМЕ. Также прилагается рабочий проект в ISIS Proteus. Материал предоставил – i8086.

АРХИВ: Скачать с сервера 



Категория: Устройства на микроконтроллерах | Добавил: brys99 (19.07.2012)
Просмотров: 11931 | Комментарии: 2 | Теги: ВОЛЬТАМПЕРМЕТР НА МИКРОКОНТРОЛЛЕРЕ | Рейтинг: 3.0/2


Всего комментариев: 2
0
2 Demo65   (04.01.2014 00:56)
нужна фильтрация по питанию и между 21-22 установить конденсатор на 0.1, тогда и перестанут прыгать показания.

0
1 tehnyk44   (26.10.2012 14:02)
Собрал даную схему для лаб. БП но показания вольтметра скачут в верх-низ в пределах одного вольта, с амперметром тоже самое, подскажите пожалуйста как устранить. Заранее спасибо.

Все ссылки на книги и журналы, представлены на этом сайте, исключительно для ознакомления, авторские права на эти публикации принадлежат авторам книг и издательствам журналов! Подробно тут!
Жалоба

Пожалуйста оставьте свои комментарии !!!!

Имя *:
Email:
Код *:


ElectroTOP - Рейтинг сайтов
Copyright Zloy Soft (Company) © 2008 - 2016