Датчики температуры LM135, LM235, LM335. Описание на русском языке. Характеристики, применение.

07.03.2016 Автор: ЭДУАРД

В публикации приводится подробное описание термодатчиков LM135, LM235 и LM335 на русском языке. Использована информация из документации (datasheet) LMx35.pdf производителя датчиков – корпорации Texas Instruments.

Это одни из самых дешевых интегральных датчиков температуры. Цена LM335 не превышает 0,5 \$. При этом они имеют параметры достаточные для большинства приложений. Точность измерения может быть повышена за счет калибровки датчика.

- Особенности.
- Области применения.
- Описание.
- Базовые схемы включения.
- Назначение выводов.
- Предельно допустимые параметры.
- Рекомендованные условия эксплуатации.
- Характеристики для тепловых расчетов.
- Погрешность измерения LM135A/LM235A, LM135/LM235.
- Погрешность измерения LM335, LM335A.
- Электрические характеристики.

- Типовые характеристики.
- Подробное описание.
- Схема датчика.
- Калибровка с использованием вывода ADJ.
- Применение.
- Пример разработки.
- Примеры практических схем.
- Требования к монтажу.
- Подключение термодатчика длинным кабелем.

Особенности.

- Откалиброваны в градусах по шкале Кельвина.
- Первоначальная точность 1 °C.
- Работают при токах от 0,4 до 5 мА.
- Динамический импеданс не более 1 Ом.
- Простой способ калибровки выходного напряжения.
- Широкий диапазон рабочих температур.
- Кратковременные перегрузки до 200 °C.
- Низкая цена.

Области применения.

- Источники питания.
- Системы контроля аккумуляторов.
- Системы климатического контроля.
- Другие технические приложения.

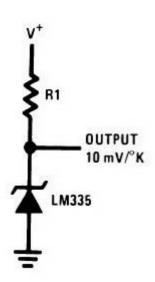
Описание.

Серия LM135 это прецизионные интегральные датчики температуры. С точки зрения схемотехники они представляет собой двух выводные диоды Зенера (стабилитроны), напряжение стабилизации которых прямо пропорционально температуре с коэффициентом 10 мВ / °К.

Динамический импеданс термодатчиков не превышает 1 Ом, а рабочий ток может быть в диапазоне от 0,4 до 5 мА. Откалиброванный при 25 °C, LM135 имеет погрешность не более 1 °C в диапазоне до 100 °C. Подобно другим интегральным термодатчикам, у LM135 линейная зависимость выходного напряжения от температуры.

LM135 могут быть использованы в любых приложениях для измерения температуры от -55 до +150 °C. Линейная характеристика и низкий импеданс позволяют легко подключать термодатчики к управляющим устройствам.

Диапазон рабочих температур для датчиков:


- LM135 55 ... + 150 °C;
- LM235 40 ... + 125 °C;
- LM335 40 ... + 100 °C.

Датчики серии LMx35 выполнены в корпусах:

Тип датчика	Корпус	Размеры
LM135	TO-46 (3)	4.699 мм × 4.699 мм
LM135A		
LM235	TO-92 (3)	4.30 мм × 4.30 мм
LM235A		
LM335	SOIC (8)	4.90 мм × 3.91 мм
LM335A		

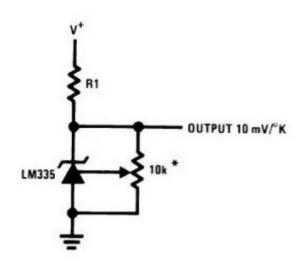
Базовые схемы включения.

Обычно термодатчики включаются по схеме двух выводных стабилитронов с ограничительными резисторами.

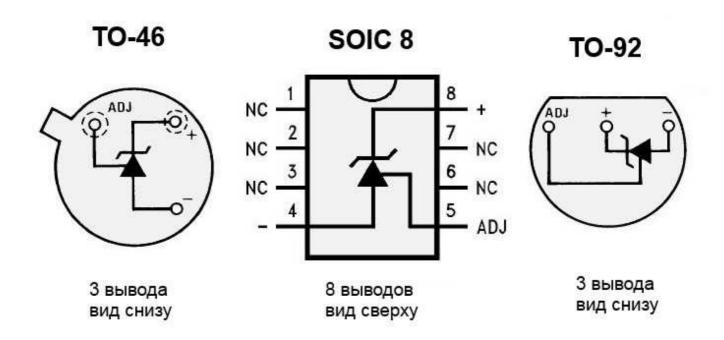
Резистор R1 ограничивает ток. Может быть рассчитан как

$$R1 = (V^+ - (t * 0.01)) / I$$

R1 - сопротивление резистора в кОм,


 V^+ - напряжение питания в В,

Т - температура датчика в °К,


I – ток датчика в мА.

Ток датчика I необходимо выбирать таким, чтобы при изменении температуры он был в диапазоне 0,4 до 5 мА.

Для повышения точности, датчик может быть включен по схеме с калибровкой выходного напряжения.

Назначение выводов.

Предельно допустимые параметры.

Превышение предельно допустимых параметров может вывести устройство из строя.

Параметр	Мин.	Макс.	Ед. изм.
Обратный ток		15	мА
Прямой ток		10	мА

Температура хранения	Корпус SOIC	- 65	150	°C
	Корпус ТО- 92	- 60	150	°C

Рекомендованные условия эксплуатации.

			Мин.	Ном.	Макс.	Ед. изм.
T	LM125	Продолжительный ($T_{MIN} \le T_A \le T_{MAX}$)	-55		150	°C
Температура	LM135, LM135A	Прерывистый	150		200	
	IMODE	Продолжительный ($T_{MIN} \le T_A \le T_{MAX}$)	-40		125	°C
	LM235, LM235A	Прерывистый	125		150	
	LM22E	Продолжительный ($T_{MIN} \le T_A \le T_{MAX}$)	-40		100	°C
	LM335, LM335A	Прерывистый	100		125	
Прямой ток			0.4	1,0	5	мА

Характеристики для тепловых расчетов.

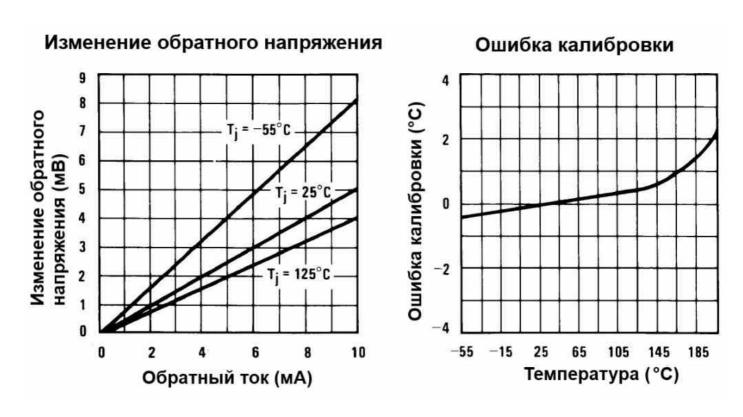
	Параметр	LM335 / LM335A	LM235 / LM235A	LM135 / LM135A	Ед. изм.
		SOIC (D)	TO-92 (LP)	TO-46 (NDV)	
		8 выводов	3 вывода	3 вывода	
R _{0JA}	Тепловое сопротивление кристалл-среда	165	202	400	°C/
R _θ јС	Тепловое сопротивление кристалл- корпус	_	170	_	Вт

Погрешность измерения температуры LM135A/LM235A, LM135/LM235.

Параметр	Условия	LM135/LM235			LM13	Ед.		
		Мин.	Тип.	Макс.	Мин.	Тип.	Макс.	изм.
Выходное напряжение	$T_C = 25$ °C, $I_R = 1$ MA	2.95	2.98	3.01	2.97	2.98	2.99	В
Некалиброванная погрешность	$T_C = 25$ °C, $I_R = 1$ MA		1	3		0.5	1	°C

Некалиброванна погрешность	Я	$T_{MIN} \le T_{C} \le T_{MAX}$, $I_{R} = 1$	2	5	1.3	2.7	°C
погрешность		MAX, IR — I					
Погрешность при 25 °C		$T_{MIN} \le T_C \le T_{MAX}$, $I_R = 1$	0.5	1.5	0.3	1.0	°C
Калиброванная погрешность	Расшир- енная	$T_C = T_{MAX}$ (прерывистый)	2		2		°C
	Нели- нейность	I _R = 1 MA	0.3	1	0.3	0.5	°C

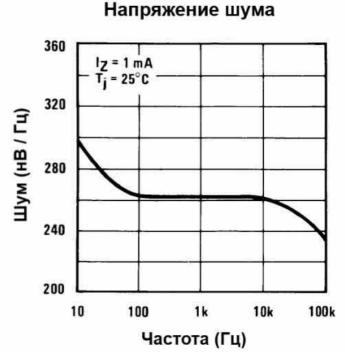
Погрешность измерения температуры LM335, LM335A.

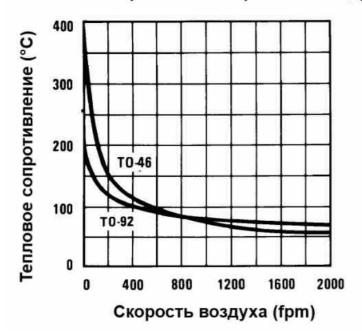

Параметр		Условия		LM33!	5		LM335	A	Ед.
			Мин.	Тип.	Макс.	Мин.	Тип.	Макс.	изм.
Выходное напря	іжение	$T_C = 25$ °C, $I_R = 1$ MA	2.92	2.98	3.04	2.95	2.98	3.01	В
Некалиброванна погрешность	RE	$T_C = 25$ °C, $I_R = 1$ MA		2	6		1	3	°C
Некалиброванна погрешность	я	$T_{MIN} \le T_{C} \le T_{MAX}$, $I_{R} = 1$ MA		4	9		2	5	°C
Погрешность при 25 °C		$T_{MIN} \le T_{C} \le T_{MAX}$, $I_{R} = 1$ MA		1	2		0.5	1	°C
Калиброванная погрешность	Расшир- енная	$T_C = T_{MAX}$ (прерывистый)		2			2		°C
	Нели- нейность	$I_R = 1 \text{ MA}$		0.3	1.5		0.3	1.5	°C

Электрические характеристики термодатчиков LM135, LM235, LM335.

Параметр	Условия	LM135/LM235/LM135A/LM 235A			LM3	Ед.		
		Мин.	Тип.	Макс.	Мин.	Тип.	Макс.	
Изменение выходного напряжения от тока	400 MKA ≤ I _R ≤ 5 MA		2.5	10		3	14	мВ
Динамический импеданс	$I_R = 1 \text{ MA}$		0.5			0.6		Ом
Температурный коэффициент выходного напряжения			10			10		мВ/ °С

Время температурной константы	Не движущийся воздух	80		80	сек
	воздух 100 фут/ мин	10		10	сек
	Масло	1		1	сек
Временная стабильность	$T_{C} = 125^{\circ}C$	200		200	°C/


Типовые характеристики.



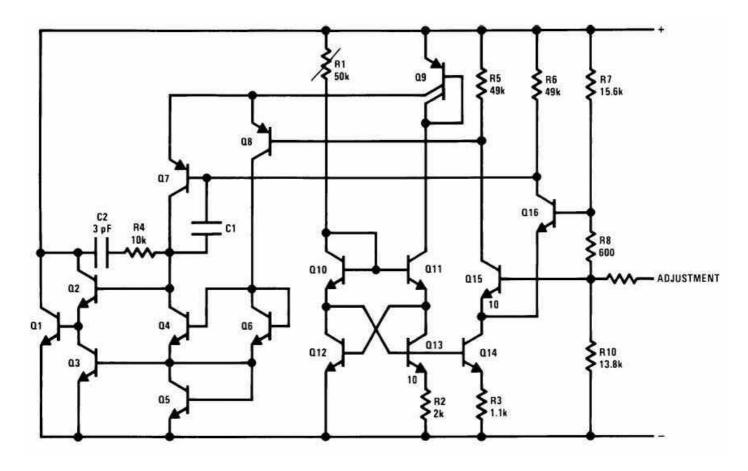
Тепловое сопротивление кристалл-воздух

Скорость воздуха (fpm)

Время тепловой константы

Подробное описание.

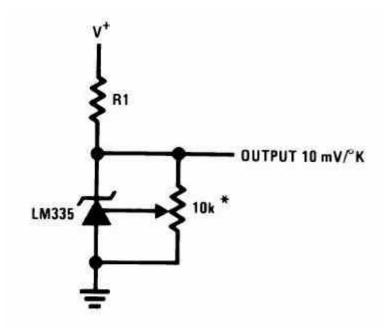
LM135 могут быть использованы в любых приложениях для измерения температуры от -55 до +150 °C. Линейная характеристика и низкий импеданс позволяют легко подключать термодатчики к управляющим устройствам.


Диапазон рабочих температур для датчиков:

- LM135 55 ... + 150 °C;
- LM235 40 ... + 125 °C;
- LM335 40 ... + 100 °C.

С точки зрения схемотехники термодатчик представляет собой двух выводной диод Зенера (стабилитрон), напряжение стабилизации которого прямо пропорционально температуре с коэффициентом 10 мВ / °К.

Динамический импеданс термодатчиков не превышает 1 Ом, а рабочий ток может быть в диапазоне от 0.4 до 5 мА. Откалиброванный при 25 °C, LM135 имеет погрешность не более 1 °C в диапазоне до 100 °C. Подобно другим интегральным термодатчикам, у LM135 линейная зависимость выходного напряжения от температуры.


Схема датчика.

Калибровка датчика с использованием вывода ADJ.

В термодатчике реализован простой способ калибровки для повышения точности измерения. С помощью потенциометра на вывод ADJ подается напряжение смещения. Это позволяет корректировать погрешность устройства во всем диапазоне температур.

Калибровка в одной точке устраняет погрешность во всем диапазоне температур, потому что выходное напряжение датчика пропорционально абсолютному значению температуры с отсчетом от 0. Т.е. на выходе устройства 0 В при температуре -273,15 °C. Ошибка выходного напряжения пропорциональна во всем диапазоне. Поэтому корректировка погрешности в одной точке повышает точность измерения термодатчика во всем рабочем диапазоне.

Напряжение на выходе датчика:

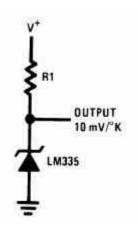
 $V_{OUTT} = V_{OUTTo} * T / To, где$

 V_{OUTT} – напряжение на выходе;

V_{OUTTo} - напряжение на выходе при образцовой температуре;

Т и То - измеряемая и образцовая температуры.

Для термодатчика с откалиброванной температурой в одной точкой, коэффициент будет одинаков во всем диапазоне. Номинально он составляет 10 мВ / °К.


Применение.

Для обеспечения хорошей точности измерения необходимо выполнить определенные требования.

Как и в других термодатчиках, точность измерения может снизить само разогрев корпуса устройства. Для этого необходимо эксплуатировать датчик при возможно меньшем токе. Конечно, величина тока должна быть достаточной для калибровочной и измерительной цепей во всем диапазоне температур. Если термодатчик используется в условиях, когда тепловое сопротивление окружающей среды постоянно, ошибка само разогрева может быть скомпенсирована калибровкой. Это возможно только при питании устройства стабильным током. Само нагрев будет пропорционален напряжению на датчике, а значит температуре. Это делает ошибку само разогрева пропорциональной температуре, так же как масштабного коэффициента датчика.

Пример разработки измерителя температуры.

Типовая схема включения.

Требования.

Параметр	Значение
Точность при 25°C	±1° C
точность в диапазоне -55 °C 150 °C	±2.7° C
Прямой ток	1 mA
Массштаб преобразования	10 мВ/°К

Для достижения оптимальной точности измерения, сопротивление R1 необходимо рассчитать так, чтобы ток термодатчика был равен 1 мА. Ток через устройство может меняться при изменении тока нагрузки и напряжения питания. Но он должен оставаться в диапазоне 0,4 ... 5 мА. При уменьшении тока, точность датчика будет выше. Для расчетов влияния тока на погрешность выходного напряжения может быть использована типовая характеристика зависимости напряжения датчика от тока.

Примеры практических схем использования термодатчика серии LMx35.

Схема включения датчика при широком диапазоне питающего напряжения.

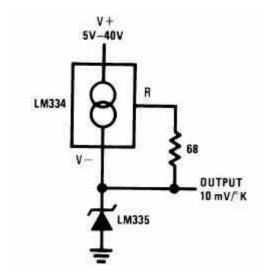


Схема для измерения минимального значения температуры в трех точках. На выходе будет напряжение датчика с минимальной температурой.

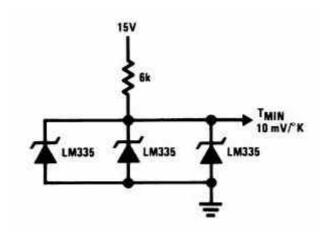


Схема измерения средней температуры в трех точках. Масштаб преобразования температуры для этой схемы 30 мВ/°К.

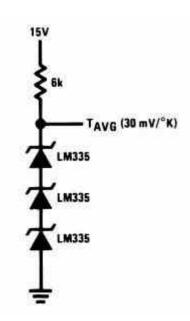
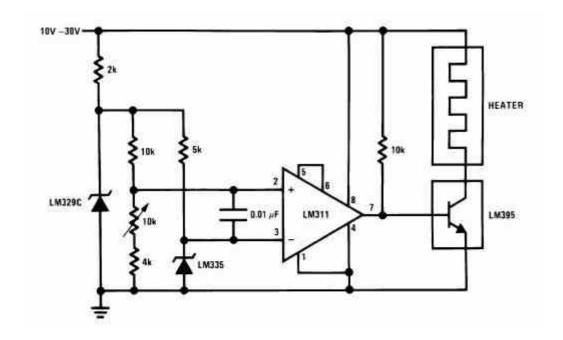



Схема простого релейного контроллера температуры.

Требования к монтажу.

Требования к монтажу датчиков LM135 ничем не отличаются от требований для других интегральных термодатчиков. Необходимо применять клеи или компаунды при установке датчиков, что позволит снизить разность температур между термодатчиком и измеряемой поверхностью до $0.01\,^{\circ}$ C.

В случае значительной разницы между температурой окружающей среды и поверхностью измерения, температуры датчика и поверхности могут значительно отличаться. Например, в корпусе ТО-92 медные выводы отводят значительное количество тепла в окружающий воздух, что влияет на температуру датчика. Чтобы устранить этот эффект необходимо стремиться к тому, чтобы температуры выводов и поверхности были как можно ближе к друг другу. Один из вариантов - приклеить выводы к поверхности компаундом.

Подключение термодатчика длинным кабелем.

При подключении датчика через линию большой длины, падение напряжения на проводах может вызвать дополнительную погрешность измерения.

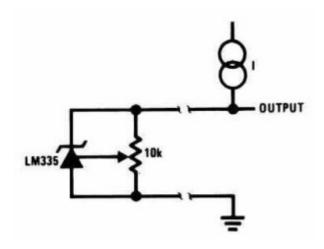


Таблица показывает зависимость длины линии от сечения провода при погрешности в 1 °C.

	I _R = 0,5 MA	$I_R = 1 MA$
AWG	фут	фут
14	8000	4000
16	5000	2500
18	3200	1600
20	2000	1000
22	1250	625
24	800	400